Package index
-
explain()
- Explain the output of machine learning models with dependence-aware (conditional/observational) Shapley values
-
explain_forecast()
- Explain a forecast from time series models with dependence-aware (conditional/observational) Shapley values
-
get_extra_comp_args_default()
- Gets the default values for the extra estimation arguments
-
get_iterative_args_default()
- Function to specify arguments of the iterative estimation procedure
-
get_output_args_default()
- Gets the default values for the output arguments
-
get_supported_approaches()
- Gets the implemented approaches
-
get_supported_models()
- Provides a data.table with the supported models
-
plot(<shapr>)
- Plot of the Shapley value explanations
-
plot_MSEv_eval_crit()
- Plots of the MSEv Evaluation Criterion
-
plot_SV_several_approaches()
- Shapley value bar plots for several explanation objects
-
plot_vaeac_eval_crit()
- Plot the training VLB and validation IWAE for
vaeac
models
-
plot_vaeac_imputed_ggpairs()
- Plot Pairwise Plots for Imputed and True Data
-
print(<shapr>)
- Print method for shapr objects
-
vaeac_get_extra_para_default()
- Function to specify the extra parameters in the
vaeac
model
-
vaeac_train_model_continue()
- Continue to Train the vaeac Model