Skip to contents

All functions

explain()
Explain the Output of Machine Learning Models with Dependence-Aware (Conditional/Observational) Shapley Values
explain_forecast()
Explain a Forecast from Time Series Models with Dependence-Aware (Conditional/Observational) Shapley Values
get_extra_comp_args_default()
Get the Default Values for the Extra Computation Arguments
get_iterative_args_default()
Function to specify arguments of the iterative estimation procedure
get_output_args_default()
Get the Default Values for the Output Arguments
get_results()
Extract Components from a Shapr Object
get_supported_approaches()
Get the Implemented Approaches
get_supported_models()
Provide a data.table with the Supported Models
plot(<shapr>)
Plot of the Shapley Value Explanations
plot_MSEv_eval_crit()
Plots of the MSEv Evaluation Criterion
plot_SV_several_approaches()
Shapley Value Bar Plots for Several Explanation Objects
plot_vaeac_eval_crit()
Plot the training VLB and validation IWAE for vaeac models
plot_vaeac_imputed_ggpairs()
Plot Pairwise Plots for Imputed and True Data
print(<shapr>)
Print Method for Shapr Objects
summary(<shapr>)
Summary Method for Shapr Objects
vaeac_get_extra_para_default()
Specify the Extra Parameters in the vaeac Model
vaeac_train_model_continue()
Continue to Train the vaeac Model