All functions

explain()

Explain the output of machine learning models with dependence-aware (conditional/observational) Shapley values

explain_forecast()

Explain a forecast from time series models with dependence-aware (conditional/observational) Shapley values

get_extra_comp_args_default()

Gets the default values for the extra estimation arguments

get_iterative_args_default()

Function to specify arguments of the iterative estimation procedure

get_output_args_default()

Gets the default values for the output arguments

get_supported_approaches()

Gets the implemented approaches

get_supported_models()

Provides a data.table with the supported models

plot(<shapr>)

Plot of the Shapley value explanations

plot_MSEv_eval_crit()

Plots of the MSEv Evaluation Criterion

plot_SV_several_approaches()

Shapley value bar plots for several explanation objects

plot_vaeac_eval_crit()

Plot the training VLB and validation IWAE for vaeac models

plot_vaeac_imputed_ggpairs()

Plot Pairwise Plots for Imputed and True Data

print(<shapr>)

Print method for shapr objects

vaeac_get_extra_para_default()

Function to specify the extra parameters in the vaeac model

vaeac_train_model_continue()

Continue to Train the vaeac Model