Skip to contents

All functions

explain()
Explain the output of machine learning models with dependence-aware (conditional/observational) Shapley values
explain_forecast()
Explain a forecast from time series models with dependence-aware (conditional/observational) Shapley values
get_extra_comp_args_default()
Gets the default values for the extra estimation arguments
get_iterative_args_default()
Function to specify arguments of the iterative estimation procedure
get_output_args_default()
Gets the default values for the output arguments
get_supported_approaches()
Gets the implemented approaches
get_supported_models()
Provides a data.table with the supported models
plot(<shapr>)
Plot of the Shapley value explanations
plot_MSEv_eval_crit()
Plots of the MSEv Evaluation Criterion
plot_SV_several_approaches()
Shapley value bar plots for several explanation objects
plot_vaeac_eval_crit()
Plot the training VLB and validation IWAE for vaeac models
plot_vaeac_imputed_ggpairs()
Plot Pairwise Plots for Imputed and True Data
print(<shapr>)
Print method for shapr objects
vaeac_get_extra_para_default()
Function to specify the extra parameters in the vaeac model
vaeac_train_model_continue()
Continue to Train the vaeac Model