Package index
-
explain() - Explain the Output of Machine Learning Models with Dependence-Aware (Conditional/Observational) Shapley Values
-
explain_forecast() - Explain a Forecast from Time Series Models with Dependence-Aware (Conditional/Observational) Shapley Values
-
get_extra_comp_args_default() - Get the Default Values for the Extra Computation Arguments
-
get_iterative_args_default() - Function to specify arguments of the iterative estimation procedure
-
get_output_args_default() - Get the Default Values for the Output Arguments
-
get_results() - Extract Components from a Shapr Object
-
get_supported_approaches() - Get the Implemented Approaches
-
get_supported_models() - Provide a
data.tablewith the Supported Models
-
plot(<shapr>) - Plot of the Shapley Value Explanations
-
plot_MSEv_eval_crit() - Plots of the MSEv Evaluation Criterion
-
plot_SV_several_approaches() - Shapley Value Bar Plots for Several Explanation Objects
-
plot_vaeac_eval_crit() - Plot the training VLB and validation IWAE for
vaeacmodels
-
plot_vaeac_imputed_ggpairs() - Plot Pairwise Plots for Imputed and True Data
-
print(<shapr>) - Print Method for Shapr Objects
-
summary(<shapr>) - Summary Method for Shapr Objects
-
vaeac_get_extra_para_default() - Specify the Extra Parameters in the
vaeacModel
-
vaeac_train_model_continue() - Continue to Train the
vaeacModel